

Dynamo Language Manual

1. Language Basics

2. Geometry Basics

3. Geometric Primitives

4. Vector Math

5. Range Expressions

6. Collections

7. Functions

8. Math

9. Curves: Interpreted and Control Points

10. Translation, Rotation, and Other Transformations

11. Conditionals and Boolean Logic

12. Looping

13. Replication Guides

14. Collection Rank and Jagged Collections

15. Surfaces: Interpreted, Control Points, Loft, Revolve

16. Geometric Parameterization

17. Intersection and Trim

18. Geometric Booleans

A-1. Appendix 1: Python Point Generators

Contents

Programming languages are created to express ideas, usually

involving logic and calculation. In addition to these objectives, the

Dynamo textual language (formerly DesignScript) has been

created to express design intentions. It is generally recognized

that computational designing is exploratory, and Dynamo tries to

support this: we hope you find the language flexible and fast

enough to take a design from concept, through design iterations,

to your final form.

This manual is structured to give a user with no knowledge of

either programming or architectural geometry full exposure to a

variety of topics in these two intersecting disciplines. Individuals

with more experienced backgrounds should jump to the individual

sections which are relevant to their interests and problem

domain. Each section is self-contained, and doesnôt require any

knowledge besides the information presented in prior sections.

Text blocks inset in the Consolas font should be pasted into a

Code Block node. The output of the Code Block should be

connected into a Watch node to see the intended result. Images

are included in the left margin illustrating the correct output of

your program.

Introduction

This document discusses the Dynamo textual programming

language, used inside of the Dynamo editor (sometimes referred

to as ñDynamo Sandboxò). To create a new Dynamo script, open

the Dynamo editor, and select the ñNewò button in the ñFILESò

group:

This will open a blank Dynamo graph. To write a Dynamo text

script, double click anywhere in the canvas. This will bring up a

ñCode Blockò node. In order to easily see the results of our

scripts, attach a ñWatchò node to the output of your Code Block

node, as shown here:

Every script is a series of written commands. Some of these

commands create geometry; others solve mathematical

problems, write text files, or generate text strings. A simple, one

line program which generates the quote ñLess is more.ò looks like

this:

The Watch node on the left shows the output of the script.

" Less is more. ";

1: Language Basics

The command generates a new String object. Strings in Dynamo

are designated by two quotation marks ("), and the enclosed

characters, including spaces, are passed out of the node. Code

Block nodes are not limited to generating Strings. A Code Block

node to generate the number 5420 looks like this:

Every command in Dynamo is terminated by a semicolon. If you

do not include one, the Editor will add one for you. Also note that

the number and combination of spaces, tabs, and carriage

returns, called white space, between the elements of a command

do not matter. This program produces the exact same output as

the first program:

Naturally, the use of white space should be used to help improve

the readability of your code, both for yourself and future readers.

Comments are another tool to help improve the readability of

your code. In Dynamo, a single line of code is ñcommentedò with

two forward slashes, // . This makes the node ignore everything

written after the slashes, up to a carriage return (the end of the

line). Comments longer than one line begin with a forward slash

asterisk, /* , and end with an asterisk forward slash, */ .

5420;

 " Less Is More . "

;

So far the Code Block arguments have been óliteralô values,

either a text string or a number. However it is often more useful

for function arguments to be stored in data containers called

variables, which both make code more readable, and eliminate

redundant commands in your code. The names of variables are

up to individual programmers to decide, though each variable

name must be unique, start with a lower or uppercase letter, and

contain only letters, numbers, or underscores, _. Spaces are not

allowed in variable names. Variable names should, though are

not required, to describe the data they contain. For instance, a

variable to keep track of the rotation of an object could be called

rotation . To describe data with multiple words, programmers

typically use two common conventions: separate the words by

capital letters, called camelCase (the successive capital letters

mimic the humps of a camel), or to separate individual words with

underscores. For instance, a variable to describe the rotation of a

small disk might be named smallDiskRotation or

small_disk_rotation , depending on the programmerôs stylistic

preference. To create a variable, write its name to the left of an

equal sign, followed by the value you want to assign to it. For

instance:

Besides making readily apparent what the role of the text string

is, variables can help reduce the amount of code that needs

updating if data changes in the future. For instance the text of the

following quote only needs to be changed in one place, despite

its appearance three times in the program.

// This is a single line comment

/* This is a multiple line comment,

 which continues for multiple

 lines. */

// All of these comments have no effect on

// the execution of the program

// This line pr ints a quote by Mies van der Rohe

" Less Is More " ;

quote = " Less is more. " ;

Here we are joining a quote by Mies van der Rohe three times,

with spaces between each phrase. Notice the use of the +

operator to óconcatenateô the strings and variables together to

form one continuous output.

// My favorite architecture quote

quote = " Less is more. " ;

quote + " " + quote + " " + quote;

// My NEW favorite architecture quote

quote = " Less is a bore. " ;

quote + " " + quote + " " + quote;

The simplest geometrical object in the Dynamo standard

geometry library is a point. All geometry is created using special

functions called constructors, which each return a new instance

of that particular geometry type. In Dynamo, constructors begin

with the name of the objectôs type, in this case Point , followed by

the method of construction. To create a three dimensional point

specified by x, y, and z Cartesian coordinates, use the

ByCoordinates constructor:

Constructors in Dynamo are typically designated with the ñByò

prefix, and invoking these functions returns a newly created

object of that type. This newly created object is stored in the

variable named on the left side of the equal sign, and any use of

that same original Point.

Most objects have many different constructors, and we can use

the BySphericalCoordinates constructor to create a point lying

on a sphere, specified by the sphereôs radius, a first rotation

angle, and a second rotation angle (specified in degrees):

// create a point with the following x, y, and z

// coordinates:

x = 10;

y = 2 .5 ;

z = - 6;

p = Point.ByCoordinates(x, y, z);

// create a point on a sphere with the following radius,

// theta, and phi rotation angles (specified in degrees)

radius = 5;

theta = 75.5 ;

phi = 120 .3 ;

cs = CoordinateSystem.Identity();

p = Point. BySphericalCoordinates (cs, radius, theta,

 phi);

2: Geometry Basics

Points can be used to construct higher dimensional geometry

such as lines. We can use the ByStartPointEndPoint

constructor to create a Line object between two points:

Similarly, lines can be used to create higher dimensional surface

geometry, for instance using the Loft constructor, which takes a

series of lines or curves and interpolates a surface between

them.

Surfaces too can be used to create higher dimensional solid

geometry, for instance by thickening the surface by a specified

distance. Many objects have functions attached to them, called

methods, allowing the programmer to perform commands on that

particular object. Methods common to all pieces of geometry

include Translate and Rotate , which respectively translate

(move) and rotate the geometry by a specified amount. Surfaces

have a Thicken method, which take a single input, a number

specifying the new thickness of the surface.

// create two points:

p1 = Point.ByCoordinates(3, 10, 2);

p2 = Point.ByCoordinates(- 15, 7, 0.5);

// construct a line between p1 and p2

l = Line.ByStartPointEndPoint(p1, p2);

// create points:

p1 = Point.ByCoordinates(3, 10, 2);

p2 = Point.ByCoordinates(- 15, 7, 0.5);

p3 = Point.ByCoordinates(5, - 3, 5);

p4 = Point.ByCoordinates(- 5, - 6, 2);

p5 = Point.ByCoordinates(9, - 10, - 2);

p6 = Point.ByCoordinates(- 11, - 12, - 4);

// create lines:

l1 = Line.ByStartPointEndPoint(p1, p2);

l2 = Line.ByStartPointEndPoint(p3, p4);

l3 = Line.ByStartPointEndPoint(p5, p6);

// loft between cross section lines:

surf = Surface. ByLoft ({l1, l2 , l3 });

Intersection commands can extract lower dimensional

geometry from higher dimensional objects. This extracted lower

dimensional geometry can form the basis for higher dimensional

geometry, in a cyclic process of geometrical creation, extraction,

and recreation. In this example, we use the generated Solid to

create a Surface, and use the Surface to create a Curve.

p1 = Point.ByCoordinates(3, 10, 2);

p2 = Point.ByCoordinates(- 15, 7, 0.5);

p3 = Point.ByCoordinates(5, - 3, 5);

p4 = Point.ByCoordinates(- 5, - 6, 2);

l1 = Line.ByStartPointEndPoint(p1, p2);

l2 = Line.ByStartPointEndPo int(p3, p4);

surf = Surface. ByLoft ({l1, l2});

// true indicates to thicken both sides of the Surface :

solid = surf.Thicken(4.75, true);

p1 = Point.ByCoordinates(3, 10, 2);

p2 = Point.ByCoordinates(- 15, 7, 0.5);

p3 = Point.ByCoordinates(5, - 3, 5);

p4 = Point.ByCoordinates(- 5, - 6, 2);

l1 = Line.ByStartP ointEndPoint(p1, p2);

l2 = Line.ByStartPointEndPoint(p3, p4);

surf = Surface. ByLoft ({l1, l2});

solid = surf.Thicken(4.75, true);

p = Plane.ByOriginNorma l(Point.ByCoordinates(2, 0, 0),

 Vector.ByCoordinates(1, 1, 1));

int _surf = solid .Intersect(p);

int_line = int _surf.Intersect(Plane.ByOriginNormal(

 Point.ByCoordinates(0, 0, 0),

 Vector.ByCoordinates(1, 0, 0))) ;

While Dynamo is capable of creating a variety of complex

geometric forms, simple geometric primitives form the backbone

of any computational design: either directly expressed in the final

designed form, or used as scaffolding off of which more complex

geometry is generated.

While not strictly a piece of geometry, the CoordinateSystem is

an important tool for constructing geometry. A CoordinateSystem

object keeps track of both position and geometric transformations

such as rotation, sheer, and scaling.

Creating a CoordinateSystem centered at a point with x = 0, y =

0, z = 0, with no rotations, scaling, or sheering transformations,

simply requires calling the Identity constructor:

CoordinateSystems with geometric transformations are beyond

the scope of this chapter, though another constructor allows you

to create a coordinate system at a specific point,

CoordinateSystem.ByOriginVectors :

The simplest geometric primitive is a Point, representing a zero-

dimensional location in three-dimensional space. As mentioned

earlier there are several different ways to create a point in a

particular coordinate system: Point.ByCoordinates creates a

// create a CoordinateSystem at x = 0, y = 0, z = 0,

// no rotations, scaling, or sheering transform ations

cs = CoordinateSystem.Identity() ;

// create a CoordinateSystem at a specific location,

// no rotations, scaling, or sheering transformations

x_pos = 3.6;

y_pos = 9.4;

z_pos = 13.0;

origin = Point.ByCoordinates(x_pos, y_pos, z_pos);

identity = C oordinateSystem.Identity();

cs = CoordinateSystem.ByOriginVectors(origin,

 identity.XAxis, identity.YAxis, identity.ZAxis);

3: Geometric Primitives

point with specified x, y, and z coordinates;

Point.ByCartesianCoordinates creates a point with a specified

x, y, and z coordinates in a specific coordinate system;

Point.ByCylindricalCoordinates creates a point lying on a

cylinder with radius, rotation angle, and height; and

Point.BySphericalCoordinates creates a point lying on a

sphere with radius and two rotation angle.

This example shows points created at various coordinate

systems:

The next higher dimensional Dynamo primitive is a line segment,

representing an infinite number of points between two end points.

Lines can be created by explicitly stating the two boundary points

with the constructor Line.ByStartPointEndPoint , or by

specifying a start point, direction, and length in that direction,

Line.ByStartPointDirectionLength .

// create a point with x, y, and z coordinates

x_pos = 1;

y_pos = 2;

z_pos = 3;

pCoord = Point.ByCoordinates(x_pos, y_pos, z _pos);

// create a point in a specific coordinate system

cs = CoordinateSystem.Identity();

pCoordSystem = Point.ByCartesianCoordinates(cs, x_pos,

 y_pos, z_pos);

// create a point on a cylinder with the following

// radius and height

radius = 5;

heigh t = 15;

theta = 75.5 ;

pCyl = Point.ByCylindricalCoordinates(cs, radius, theta,

 height);

// create a point on a sphere with radius and two angles

phi = 120 .3 ;

pSphere = Point. BySphericalCoordinates (cs, radius,

 theta, phi);

Dynamo has objects representing the most basic types of

geometric primitives in three dimensions: Cuboids, created with

Cuboid.ByLengths ; Cones, created with Cone.ByPoints Radius

and Cone.ByPointsRadii ; Cylinders, created with

Cylinder.ByRadiusHeight ; and Spheres, created with

Sphere.ByCenterPointRadius .

p1 = Point.ByCoor dinates(- 2, - 5, - 10);

p2 = Point.ByCoordinates(6, 8, 10);

// a line segment between two points

l2pts = Line.ByStartPointEndPoint(p1, p2);

// a line segment at p1 in direction 1, 1, 1 with

// length 10

lDir = Line.ByStartPointDirectionLength(p1,

 Vector.ByCoordinates(1, 1, 1), 10);

// create a cuboid with specified lengths

cs = CoordinateSystem.Identity();

cub = Cuboid.ByLengths(cs, 5, 15, 2);

// create several cones

p1 = Point.ByCoordinates(0, 0, 10);

p2 = Point.ByCoordinates(0, 0, 20);

p3 = Poin t.ByCoordinates(0, 0, 30);

cone1 = Cone.By PointsRadii (p1, p2, 10, 6);

cone2 = Cone. ByPointsRadii (p2, p3 , 6, 0);

// make a cylinder

cylCS = cs.Translate(10, 0, 0);

cyl = Cylinder.ByRadiusHeight(cylCS, 3, 10);

// make a sphere

centerP = Point.ByCoordinat es(- 10, - 10, 0);

sph = Sphere.B yCenterPointRadius(centerP, 5);

Objects in computational designs are rarely created explicitly in

their final position and form, and are most often translated,

rotated, and otherwise positioned based off of existing geometry.

Vector math serves as a kind-of geometric scaffolding to give

direction and orientation to geometry, as well as to conceptualize

movements through 3D space without visual representation.

At its most basic, a vector represents a position in 3D space, and

is often times thought of as the endpoint of an arrow from the

position (0, 0, 0) to that position. Vectors can be created with the

ByCoordinates constructor, taking the x, y, and z position of the

newly created Vector object. Note that Vector objects are not

geometric objects, and donôt appear in the Dynamo window.

However, information about a newly created or modified vector

can be printed in the console window:

A set of mathematical operations are defined on Vector objects,

allowing you to add, subtract, multiply, and otherwise move

objects in 3D space as you would move real numbers in 1D

space on a number line.

Vector addition is defined as the sum of the components of two

vectors, and can be thought of as the resulting vector if the two

component vector arrows are placed ñtip to tail.ò Vector addition

is performed with the Add method, and is represented by the

diagram on the left.

// construct a Vector object

v = Vector.ByCoordinates(1, 2, 3) ;

s = v.X + " " + v.Y + " " + v.Z ;

a = Vector.ByCoordinates(5, 5, 0);

b = Vector.ByCoordinates(4, 1, 0);

// c has value x = 9, y = 6, z = 0

c = a.Add(b);

4: Vector Math

Similarly, two Vector objects can be subtracted from each other

with the Subtract method. Vector subtraction can be thought of

as the direction from first vector to the second vector.

Vector multiplication can be thought of as moving the endpoint of

a vector in its own direction by a given scale factor.

Often itôs desired when scaling a vector to have the resulting

vectorôs length exactly equal to the scaled amount. This is easily

achieved by first normalizing a vector, in other words setting the

vectorôs length exactly equal to one.

c still points in the same direction as a (1, 2, 3), though now it has

length exactly equal to 5.

a = Vector.ByCoordinates(5, 5, 0);

b = Vector.ByCoordinates(4, 1, 0);

// c has value x = 1, y = 4, z = 0

c = a.Subtract(b);

a = Vector.ByCoordinates(4, 4, 0);

// c has value x = 20, y = 20, z = 0

c = a. Scale (5);

a = Vector.ByCoordinates(1, 2, 3);

a_len = a.Length;

// set the a's length equal to 1.0

b = a.Normalized();

c = b. Scale (5);

// len is equal to 5

len = c.Length;

Two additional methods exist in vector math which donôt have

clear parallels with 1D math, the cross product and dot product.

The cross product is a means of generating a Vector which is

orthogonal (at 90 degrees to) to two existing Vectors. For

example, the cross product of the x and y axes is the z axis,

though the two input Vectors donôt need to be orthogonal to each

other. A cross product vector is calculated with the Cross

method.

An additional, though somewhat more advanced function of

vector math is the dot product. The dot product between two

vectors is a real number (not a Vector object) that relates to, but

is not exactly, the angle between two vectors. One useful

properties of the dot product is that the dot product between two

vectors will be 0 if and only if they are perpendicular. The dot

product is calculated with the Dot method.

a = Vector.ByCoordinates(1, 0, 1);

b = Vector.ByCoordinates(0, 1, 1);

// c has v alue x = - 1, y = - 1, z = 1

c = a. Cross (b);

a = Vector.ByCoordinates(1, 2, 1);

b = Vector.ByCoordinates(5, - 8, 4);

// d has value - 7

d = a. Dot(b);

Almost every design involves repetitive elements, and explicitly

typing out the names and constructors of every Point, Line, and

other primitives in a script would be prohibitively time consuming.

Range expressions give a Dynamo programmer the means to

express sets of values as parameters on either side of two dots

(..), generating intermediate numbers between these two

extremes.

For instance, while we have seen variables containing a single

number, it is possible with range expressions to have variables

which contain a set of numbers. The simplest range expression

fills in the whole number increments between the range start and

end.

In previous examples, if a single number is passed in as the

argument of a function, it would produce a single result. Similarly,

if a range of values is passed in as the argument of a function, a

range of values is returned.

For instance, if we pass a range of values into the Line

constructor, Dynamo returns a range of lines.

By default range expressions fill in the range between numbers

incrementing by whole digit numbers, which can be useful for a

quick topological sketch, but are less appropriate for actual

designs. By adding a second ellipsis (..) to the range

expression, you can specify the amount the range expression

increments between values. Here we want all the numbers

between 0 and 1, incrementing by 0.1:

a = 1..6;

x_pos = 1..6 ;

y_pos = 5;

z_pos = 1;

lines = Line.ByStartPointEndPoint(Point.ByCoordinates(0,

 0, 0), Point.ByCoordinates(x_pos, y_pos, z_pos));

5: Range Expressions

One problem that can arise when specifying the increment

between range expression boundaries is that the numbers

generated will not always fall on the final range value. For

instance, if we create a range expression between 0 and 7,

incrementing by 0.75, the following values are generated:

If a design requires a generated range expression to end

precisely on the maximum range expression value, Dynamo can

approximate an increment, coming as close as possible while still

maintaining an equal distribution of numbers between the range

boundaries. This is done with the approximate sign (~) before the

third parameter:

However, if you want to Dynamo to interpolate between ranges

with a discrete number of elements, the # operator allows you to

specify this:

a = 0..1..0.1;

a = 0..7..0.75;

// DesignScript will increment by 0.777 not 0.75

a = 0..7..~0.75;

// Interpolate between 0 and 7 such that

ƳƳ ƧÁƨ ×ÉÌÌ ÃÏÎÔÁÉÎ ʮ ÅÌÅÍÅÎÔs

a = 0..7..#9;

Collections are special types of variables which hold sets of

values. For instance, a collection might contain the values 1 to

10, {1, 2, 3, 4, 5, 6, 7, 8, 9, 1 0} , assorted geometry

from the result of an Intersection operation, {Surface, Point,

Line, Point} , or even a set of collections themselves, { {1, 2,

3}, {4, 5}, 6 } .

One of the easier ways to generate a collection is with range

expressions (see: Range Expressions). Range expressions by

default generate collections of numbers, though if these

collections are passed into functions or constructors, collections

of objects are returned.

When range expressions arenôt appropriate, collections can be

created empty and manually filled with values. The square

bracket operator ([]) is used to access members inside of a

collection. The square brackets are written after the variableôs

name, with the number of the individual collection member

contained inside. This number is called the collection memberôs

index. For historical reasons, indexing starts at 0, meaning the

first element of a collection is accessed with: collection[0] ,

and is often called the ñzerothò number. Subsequent members

are accessed by increasing the index by one, for example:

The individual members of a collection can be modified using the

same index operator after the collection has been created:

// use a range expression to generate a collection of

// numbers

nums = 0..10..0.75;

// use the collection of numbers to generate a

// collection of Points

points = Point.ByCoordinates(nums, 0, 0);

// a collection of numbers

nums = 0..10..0.75;

// create a single point with the 6th element of the

// collection

points = Point.ByCoordinates(nums[5], 0, 0);

6: Collections

In fact, an entire collection can be created by explicitly setting

every member of the collection individually. Explicit collections

are created with the curly brace operator ({}) wrapping the

collectionôs starting values, or left empty to create an empty

collection:

Collections can also be used as the indexes to generate new sub

collections from a collection. For instance, a collection containing

the numbers {1, 3, 5, 7} , when used as the index of a

collection, would extract the 2nd, 4th, 6th, and 8th elements from a

collection (remember that indices start at 0):

Dynamo contains utility functions to help manage collections. The

Count function, as the name implies, counts a collection and

returns the number of elements it contains.

// generate a collection of numbers

a = 0..6;

// change several of the elements of a collection

a[2] = 100;

a[5] = 200;

// create a collection explicitly

a = { 45, 67, 22 };

// create an empty collection

b = {};

// change several of the elements of a collection

b[0] = 45;

b[1] = 67;

b[2] = 22;

a = 5..20 ;

indices = {1, 3, 5, 7};

// create a collection via a c ollection of indices

b = a[indices];

// crea te a collection with 10 elements

a = 1..10 ;

num_elements = Count(a);

Almost all the functionality demonstrated in DesignScript so far is

expressed through functions. You can tell a command is a

function when it contains a keyword suffixed by a parenthesis

containing various inputs. When a function is called in

DesignScript, a large amount of code is executed, processing the

inputs and returning a result. The constructor function

Poin t.ByCoordinates(x : double, y : double, z : double)

takes three inputs, processes them, and returns a Point object.

Like most programming languages, DesignScript gives

programmers the ability to create their own functions. Functions

are a crucial part of effective scripts: the process of taking blocks

of code with specific functionality, wrapping them in a clear

description of inputs and outputs adds both legibility to your code

and makes it easier to modify and reuse.

Suppose a programmer had written a script to create a diagonal

bracing on a surface:

This simple act of creating diagonals over a surface nevertheless

takes several lines of code. If we wanted to find the diagonals of

hundreds, if not thousands of surfaces, a system of individually

extracting corner points and drawing diagonals would be

completely impractical. Creating a function to extract the

p1 = Point.ByCoordinates(0, 0, 0);

p2 = Point.ByCoordinates(10, 0, 0);

l = Line.ByStartPointEndPoint(p1, p2);

// extrude a line vertically to create a surface

surf = l.Extrude (Vector.ByCoordinates(0, 0,

 1) , 8);

// Extract the corner points of the surface

corner_1 = surf.PointAtParameter(0, 0);

corner_2 = surf.PointAtParameter(1, 0);

corner_3 = surf.PointAtParameter(1, 1);

corner_4 = surf.PointAtParameter(0, 1);

// connect opposite corner points to create diagonals

diag_1 = Line.ByStartPointEndPoint(corner_1, corner_3);

diag_2 = Line.ByStartPointEndPoint(corner_2, corner_4);

7: Functions

diagonals from a surface allows a programmer to apply the

functionality of several lines of code to any number of base

inputs.

Functions are created by writing the def keyword, followed by the

function name, and a list of function inputs, called arguments, in

parenthesis. The code which the function contains is enclosed

inside curly braces: {} . In DesignScript, functions must return a

value, indicated by ñassigningò a value to the return keyword

variable. E.g.

This function takes a single argument and returns that argument

multiplied by 2:

Functions do not necessarily need to take arguments. A simple

function to return the golden ratio looks like this:

Before we create a function to wrap our diagonal code, note that

functions can only return a single value, yet our diagonal code

generates two lines. To get around this issue, we can wrap two

objects in curly braces, {} , creating a single collection object. For

instance, here is a simple function which returns two values:

def functionName(argument1, argument2, etc, etc, . . .)

{

 // code goes here

 return = returnVariable;

}

def getTimesTwo(arg)

{

 return = arg * 2;

}

times_two = getTimesTwo(10);

def getGoldenRatio()

{

 return = 1.61803399 ;

}

gr = getGoldenRatio();

If we wrap the diagonal code in a function, we can create

diagonals over a series of surfaces, for instance the faces of a

cuboid.

def returnTwoNumbers()

{

 retur n = {1, 2};

}

two_nums = returnTwoNumbers();

def make Diag onal(surface)

{

 corner_1 = surface.PointAtParameter(0, 0);

 corner_2 = surface.PointAtParameter(1, 0);

 corner_3 = surface.PointAtParameter(1, 1);

 corner_4 = surface.PointAtParamet er(0, 1);

 diag_1 = Line .ByStartPointEndPoint(corner_1,

 corner_3);

 diag_2 = Line .ByStartPointEndPoint(corner_2,

 corner_4);

 return = {diag_1, diag_2};

}

c = Cuboid.ByLengt hs(CoordinateSystem.Identity(),

 10, 20, 30);

diags = makeDiag onal (c.Faces.SurfaceGeometry());

The Dynamo standard library contains an assortment of

mathematical functions to assist writing algorithms and

manipulating data. Math functions are prefixed with the Math

namespace, requiring you to append functions with ñMath.ò in

order to use them.

The functions Floor , Ceiling , and Round allow you to convert

between floating point numbers and integers with predictable

outcomes. All three functions take a single floating point number

as input, though Floor returns an integer by always rounding

down, Ceiling returns an integer by always rounding up, and

Round rounds to the closest integer

Dynamo also contains a standard set of trigonometric functions

to calculate the sine, cosine, tangent, arcsine, arccosine, and

arctangent of angles, with the Sin , Cos, Tan, Asin , Acos , and

Atan functions respectively.

While a comprehensive description of trigonometry is beyond the

scope of this manual, the sine and cosine functions do frequently

occur in computational designs due their ability to trace out

positions on a circle with radius 1. By inputting an increasing

degree angle, often labeled theta , into Cos for the x position, and

Sin for the y position, the positions on a circle are calculated:

val = 0.5;

f = Math.Floor(val);

c = Math.Ceiling(val);

r = Math.Round(val);

r2 = Math.Round(val + 0.001);

8: Math

A related math concept not strictly part of the Math standard

library is the modulus operator. The modulus operator, indicated

by a percent (%) sign, returns the remainder from a division

between two integer numbers. For instance, 7 divided by 2 is 3

with 1 left over (eg 2 x 3 + 1 = 7). The modulus between 7 and 2

therefore is 1. On the other hand, 2 divides evenly into 6, and

therefore the modulus between 6 and 2 is 0. The following

example illustrates the result of various modulus operations.

num_pts = 20;

// get degree values from 0 to 360

theta = 0..360..#num_pts;

p = Point.ByCoor dinates(Math.Cos(theta),

 Math.Sin(theta), 0);

7 % 2;

6 % 2;

10 % 3;

19 % 7;

There are two fundamental ways to create free-form curves in

Dynamo: specifying a collection of Points and having Dynamo

interpret a smooth curve between them, or a more low-level

method by specifying the underlying control points of a curve of a

certain degree. Interpreted curves are useful when a designer

knows exactly the form a line should take, or if the design has

specific constraints for where the curve can and cannot pass

through. Curves specified via control points are in essence a

series of straight line segments which an algorithm smooths into

a final curve form. Specifying a curve via control points can be

useful for explorations of curve forms with varying degrees of

smoothing, or when a smooth continuity between curve

segments is required.

To create an interpreted curve, simply pass in a collection of

Points to the NurbsCurve .ByPoints method.

The generated curve intersects each of the input points,

beginning and ending at the first and last point in the collection,

respectively. An optional periodic parameter can be used to

create a periodic curve which is closed. Dynamo will

automatically fill in the missing segment, so a duplicate end point

(identical to the start point) isnôt needed.

num_pts = 6;

s = Math.S in(0..360..#num_pts) * 4;

pts = Point.ByCoordinates(1..30..#num_pts, s, 0);

int_curve = NurbsCurve .B yPoints(pts);

pts = Point.ByCoo rdinates(Math.Cos(0..350..#10),

 Math.Sin (0..350..# 10), 0);

// create an closed curve

crv = NurbsCurve .ByPoints(pts, true);

// the same curve, if left open:

crv2 = NurbsCurve.ByPoints(pts.Translate(5, 0, 0),

 false) ;

9: Curves: Interpreted and Control Points

NurbsCurves are generated in much the same way, with input

points represent the endpoints of a straight line segment, and a

second parameter specifying the amount and type of smoothing

the curve undergoes, called the degree.* A curve with degree 1

has no smoothing; it is a polyline.

A curve with degree 2 is smoothed such that the curve intersects

and is tangent to the midpoint of the polyline segments:

Dynamo supports NURBS (Non-uniform rational B-spline) curves

up to degree 20, and the following script illustrates the effect

increasing levels of smoothing has on the shape of a curve:

num_pts = 6;

pts = Point .ByCoordinates(1..30..#num_pts,

 Math.Sin (0..360..#num_pts) * 4, 0);

// a B - Spline curve with degree 1 is a polyline

ctrl_curve = NurbsCurve .ByControl Points (pts, 1);

num_pts = 6;

pts = Point .ByCoordinates(1..30..#num_pts ,

 Math.Sin (0..360..#num_pts) * 4, 0);

// a B - Spline curve with degree 2 is smooth

ctrl_curve = NurbsCurve .ByControl Points (pts, 2);

Note that you must have at least one more control point than the

degree of the curve.

Another benefit of constructing curves by control vertices is the

ability to maintain tangency between individual curve segments.

This is done by extracting the direction between the last two

control points, and continuing this direction with the first two

control points of the following curve. The following example

creates two separate NURBS curves which are nevertheless as

smooth as one curve:

num_pts = 6;

pts = Point .ByCoordinates(1..30..#num_pts,

 Math.S in(0..360..#num_pts) * 4, 0);

def create_curve(pts : Point[], degree : int)

{

 return = NurbsCurve . ByControlPoints(pts,

 degree);

}

ctrl_crvs = create_curve(pts, 1..11);

* This is a very simplified description of NURBS curve geometry,

for a more accurate and detailed discussion see Pottmann, et al,

2007, in the references.

pts_1 = {};

pts_1[0] = Point.ByCoordinates(0, 0, 0);

pts_1[1] = Point.ByCoordinates(1, 1, 0);

pts_1[2] = Point.ByCoordinates (5, 0.2, 0);

pts_1[3] = Point.ByCoordinates(9, - 3, 0);

pts_1[4] = Point.ByCoordinates(11, 2, 0);

crv_1 = NurbsCurve.ByControlPoints(pts_1, 3);

pts_2 = {};

pts_2[0] = pts_1[4];

end_dir = pts_1[4].Subtract(pts_1[3].AsVector());

pts_2[1] = Point.ByCoor din ates(pts_2[0].X + end_dir.X,

 pts_2[0].Y + end_dir.Y, pts_2[0].Z + end_dir.Z);

pts_2[2] = Point.ByCoordinates(15, 1, 0);

pts_2[3] = Point.ByCoordinates(18, - 2, 0);

pts_2[4] = Point.ByCoordinates(21, 0.5, 0);

crv_2 = NurbsCurve.ByControlPoints(pts_2, 3);

Certain geometry objects can be created by explicitly stating x, y,

and z coordinates in three-dimensional space. More often,

however, geometry is moved into its final position using

geometric transformations on the object itself or on its underlying

CoordinateSystem.

The simplest geometric transformation is a translation, which

moves an object a specified number of units in the x, y, and z

directions.

While all objects in Dynamo can be translated by appending the

.Translate method to the end of the objectôs name, more

complex transformations require transforming the object from one

underlying CoordinateSystem to a new CoordinateSystem. For

instance, to rotate an object 45 degrees around the x axis, we

would transform the object from its existing CoordinateSystem

with no rotation, to a CoordinateSystem which had been rotated

45 degrees around the x axis with the .Transform method:

// create a point at x = 1, y = 2, z = 3

p = Point.ByCoordinates(1, 2, 3);

// translate the point 10 units in the x direction,

// - 20 in y, and 50 in z

// p 2ƦÓ new position is x = 11, y = - 18, z = 53

p2 = p.Translate(10, - 20, 50);

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),

 10, 10, 10);

new_cs = CoordinateSystem.Identity();

new_cs2 = new_cs.Rotate(Point.ByCoordinates(0, 0),

 Vector.ByCoordinates(1,0,0 .5) , 2 5);

// get the existin g coordinate system of the cube

old_cs = CoordinateSystem.Identity();

cube2 = cube.Transform(old_cs, new_cs2);

10: Translation, Rotation, and Other Transformations

In addition to being translated and rotated, CoordinateSystems

can also be created scaled or sheared. A CoordinateSystem can

be scaled with the .Scale method:

Sheared CoordinateSystems are created by inputting non-

orthogonal vectors into the CoordinateSystem constructor.

cube = Cuboid.ByLengths(CoordinateSystem.Identity(),

 10, 10, 10);

new_cs = CoordinateSystem.Identity();

new_cs2 = new_cs.Scale(20);

old_ cs = CoordinateSystem.Identity() ;

cube = cube.Transform(old_cs, new_cs2);

new_cs = CoordinateSystem.ByOriginVectors(

 Point.ByCoordinates(0, 0, 0),

 Vector.ByCoordinates(- 1, - 1, 1),

 Vector.ByCoordinates(- 0.4, 0, 0));

old_cs = CoordinateSystem.Ident ity();

cube = Cuboid.ByLengths(CoordinateSystem. Identity() ,

 5, 5, 5);

new_curves = cube.Transform(old_cs, new_cs);

Scaling and shearing are comparatively more complex geometric

transformations than rotation and translation, so not every

Dynamo object can undergo these transformations. The following

table outlines which Dynamo objects can have non-uniformly

scaled CoordinateSystems, and sheared CoordinateSystems.

Class
Non-Uniformly

Scaled
CoordinateSystem

Sheared
CoordinateSystem

Arc No No

NurbsCurve Yes Yes

NurbsSurface No No

Circle No No

Line Yes Yes

Plane No No

Point Yes Yes

Polygon No No

Solid No No

Surface No No

Text No No

One of the most powerful features of a programming language is

the ability to look at the existing objects in a program and vary

the programôs execution according to these objectsô qualities.

Programming languages mediate between examinations of an

objectôs qualities and the execution of specific code via a system

called Boolean logic.

Boolean logic examines whether statements are true or false.

Every statement in Boolean logic will be either true or false, there

are no other states; no maybe, possible, or perhaps exist. The

simplest way to indicate that a Boolean statement is true is with

the true keyword. Similarly, the simplest way to indicate a

statement is false is with the false keyword. The if statement

allows you to determine if a statement is true of false: if it is true,

the first part of the code block executes, if itôs false, the second

code block executes.

In the following example, the if statement contains a true

Boolean statement, so the first block executes and a Point is

generated:

If the contained statement is changed to false , the second code

block executes and a Line is generated:

geometry = [Imperative]

{

 if (true)

 {

 return = Point.ByCoordinates(1, - 4, 6) ;

 }

 else

 {

 return = Line.ByStartPointEndPoint(

 Point.ByCoordinates(0, 0, 0),

 Point.ByCoordinates(10, - 4, 6));

 }

}

11: Conditionals and Boolean Logic

Static Boolean statements like these arenôt particularly useful; the

power of Boolean logic comes from examining the qualities of

objects in your script. Boolean logic has six basic operations to

evaluate values: less than (<), greater than (>), less than or equal

(<=), greater than or equal (>=), equal (==), and not equal (!=).

The following chart outlines the Boolean results

< Returns true if number on left side is less than number on right
side.

> Returns true if number on left side is greater than number on
right side.

<= Returns true of number on left side is less than or equal to the
number on the right side.*

>= Returns true of number on the left side is greater than or equal
to the number on the right side.*

== Returns true if both numbers are equal*

! = Returns true if both number are not equal*

* see chapter ñNumber Typesò for limitations of testing equality

between two floating point numbers.

Using one of these six operators on two numbers returns either

true or false :

geometry = [Imperative]

{

 // change true to false

 if (false)

 {

 return = Point.ByCoordinates(1, - 4, 6);

 }

 else

 {

 return = Line.ByStartPointEndPoint(

 Point.ByCoordinates(0, 0, 0),

 Point.ByCoordinates(10, - 4, 6));

 }

}

result = 10 < 30;

Three other Boolean operators exist to compare true and false

statements: and (&&), or (||), and not (!).

&& Returns true if the values on both sides are true.

|| Returns true if either of the values on both sides are true.

! Returns the Boolean opposite

Refactoring the code in the original example demonstrates

different code execution paths based on the changing inputs from

a range expression:

result = 15 <= 15;

result = 99 != 99 ;

result = true && false ;

result = true || false ;

result = ! false ;

def make_geometry(i)

{

 return = [Imperative]

 {

 // test if the input is divisible

 // by either 2 or 3 . See "Math"

 if (i % 2 == 0 || i % 3 == 0)

 {

 return = Point.ByCoordinates(i, - 4, 10);

 }

 else

 {

 return = Line.ByStartPointEndPoint(

 Point.ByCoordinates(4, 10, 0),

 Point.ByCoordinates(i, - 4, 10));

 }

 }

}

g = make_geometry(0..20);

Loops are commands to repeat execution over a block of code.

The number of times a loop is called can be governed by a

collection, where a loop is called with each element of the

collection as input, or with a Boolean expression, where the loop

is called until the Boolean expression returns false . Loops can

be used to generate collections, search for a solution, or

otherwise add repetition without range expressions.

The while statement evaluates a Boolean expression, and

continues re-executing the contained code block until the

Boolean expression is true . For instance, this script continuously

creates and re-creates a line until it has length greater than 10:

In associative Dynamo code, if a collection of elements is used

as the input to a function which normally takes a single value, the

function is called individually for each member of a collection. In

imperative Dynamo code a programmer has the option to write

code that manually iterates over the collection, extracting

individual collection members one at a time.

The for statement extracts elements from a collection into a

named variable, once for each member of a collection. The

syntax for for is: for(ñextracted variableò in ñinput collectionò)

geometry = [Imperative]

{

 x = 1;

 start = Point.ByCoordinates(0, 0, 0);

 end = Point.ByCoordinates(x, x, x);

 line = Line.ByStartPointEndPoint(start, end);

 while (line.Length < 10)

 {

 x = x + 1;

 end = Point.ByCoordinates(x, x, x);

 line = Line.ByStartPointEndPoint(start, end);

 }

 return = line;

}

12: Looping

geometry = [Imperative]

{

 collection = 0..10;

 points = {};

 for (i in collection)

 {

 points[i] = Point.ByCoordinates(i, 0, 0);

 }

 return = points;

}

The Dynamo language was created as a domain-specific tool for

architects, designers and engineers, and as such has several

language features specifically tailored for these disciplines. A

common element in these disciplines is the prevalence of objects

arrayed repetitive grids, from brick walls and tile floors to façade

paneling and column grids. While range expressions offer a

convenient means of generating one dimensional collections of

elements, replication guides offer a convenient means of

generating two and three dimensional collections.

Replication guides take two or three one-dimensional collections,

and pair the elements together to generate one, two- or three-

dimensional collection. Replication guides are indicated by

placing the symbols <1>, <2>, or <3> after a two or three

collections on a single line of code. For example, we can use

range expressions to generate two one-dimensional collections,

and use these collections to generate a collection of points:

In this example, the first element of x_vals is paired with the first

element of y_vals , the second with the second, and so on for the

entire length of the collection. This generates points with values

(0, 0, 0), (1, 1, 0), (2, 2, 0), (3, 3, 0), etcé. If we apply a

replication guide to this same line of code, we can have Dynamo

generate a two-dimensional grid from the two one dimensional

collections:

x_vals = 0..10;

y_vals = 0..10;

p = Point.ByCoordinates(x_vals, y_vals, 0);

x_vals = 0..10;

y_vals = 0..10;

// apply replication guides to the two col lections

p = Point.ByCoordinates(x_vals<1>, y_vals<2>, 0);

13: Replication Guides

By applying replication guides to x_vals and y_vals , Dynamo

generates every possible combination of values between the two

collections, first pairing the 1st element x_vals with all the

elements in y_vals , then pairing the 2nd element of x_vals with

all the elements in y_vals , and so on for every element of

x_vals .

The order of the replication guide numbers (<1>, <2>, and/or <3>)

determines the order of the underlying collection. In the following

example, the same two one-dimensional collections are used to

form two two-dimensional collections, though with the order of

<1> and <2> swapped.

curve1 and curve2 trace out the generated order of elements in

both arrays; notice that they are rotated 90 degrees to each

other. p1 was created by extracting elements of x_vals and

pairing them with y_vals , while p2 was created by extracting

elements of y_vals and pairing them with x_vals .

Replication guides also work in three dimensions, by pairing a

third collection with a third replication symbol, <3>.

x_vals = 0..10;

y_vals = 0..10;

p1 = Point.ByCoordinates(x_vals<1>, y_vals<2>, 0);

// apply the replication guides with a swapped order

// and set the points 14 units higher

p2 = Point.ByCoordi nates(x_vals<2>, y_vals<1>, 14);

curve1 = NurbsCurve.ByPoints(Flatten(p1));

curve2 = NurbsCurve.ByPoints(Flatten(p2));

This generates every possible combination of values from

combining the elements from x_vals , y_vals , and z_vals .

x_vals = 0..10;

y_vals = 0..10;

z_vals = 0..10;

// generate a 3D matrix of points

p = Point.ByCoordinates(x_vals<1>,y_vals<2>,z_vals< 3>);

The rank of a collection is defined as the greatest depth of

elements inside of a collection. A collection of single values has a

rank of 1, while a collection of collections of single values has a

rank of 2. Rank can loosely be defined as the number of square

bracket ([]) operators needed to access the deepest member of

a collection. Collections of rank 1 only need a single square

bracket to access the deepest member, while collections of rank

three require three subsequent brackets. The following table

outlines collections of ranks 1-3, though collections can exist up

to any rank depth.

Rank Collection Access 1st Element

1 {1, 2, 3, 4, 5} collection[0]
2 { {1, 2}, {3, 4}, {5, 6} } collectio n[0][0]

3
{ { {1, 2}, {3, 4} },
 { {5, 6}, {7, 8} } }

collection[0][0][0]

...

Higher ranked collections generated by range expressions and

replication guides are always homogeneous, in other words

every object of a collection is at the same depth (it is accessed

with the same number of [] operators). However, not all Dynamo

collections contain elements at the same depth. These

collections are called jagged, after the fact that the depth rises up

and down over the length of the collection. The following code

generates a jagged collection:

fail when it attempts to perform operations not supported on a

collection.

j = {};

j[0] = 1;

j[1] = {2, 3, 4};

j[2] = 5;

j[3] = { {6, 7}, { {8} } };

j[4] = 9;

14: Collection Rank and Jagged Collections

The following example shows how to access all the elements of

this jagged collection:

// generate a jagged collection

j = {1, {2, 3, 4}, 5, {{6, 7}, {{8}}}, 9} ;

s = j[0] + " " + j[1][0] + " " + j[1][1] + " " +

 j[1][2] + " " + j[2] + " " +

 j[3][0][0] + " " + j[3][0][1] + " " +

 j[3][1][0][0] + " " + j[4];

The two-dimensional analog to a NurbsCurve is the

NurbsSurface, and like the freeform NurbsCurve, NurbsSurfaces

can be constructed with two basic methods: inputting a set of

base points and having Dynamo interpret between them, and

explicitly specifying the control points of the surface. Also like

freeform curves, interpreted surfaces are useful when a designer

knows precisely the shape a surface needs to take, or if a design

requires the surface to pass through constraint points. On the

other hand, Surfaces created by control points can be more

useful for exploratory designs across various smoothing levels.

To create an interpreted surface, simply generate a two-

dimensional collection of points approximating the shape of a

surface. The collection must be rectangular, that is, not jagged.

The method NurbsSurface .ByPoints constructs a surface from

these points.

Freeform NurbsSurfaces can also be created by specifying

underlying control points of a surface. Like NurbsCurves, the

control points can be thought of as representing a quadrilateral

mesh with straight segments, which, depending on the degree of

the surface, is smoothed into the final surface form. To create a

NurbsSurface by control points, include two additional

parameters to NurbsSurface .ByPoints , indicating the degrees of

the underlying curves in both directions of the surface.

// python_points_1 is a set of Points generated with

// a Python script found in Appendix 1

surf = NurbsSurface.ByPoin ts(python_points_1);

// python_points_1 is a set of Points generated with

// a Python script found in Appendix 1

// create a surface of degree 2 with smooth segments

surf = NurbsSurface.ByPoints(python_points_1 , 2, 2);

15: Surfaces: Interpreted, Control Points, Loft, Revolve

